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Chapter 6. Molecular Spectroscopy: Applications 
Notes: 
• Most of the material presented in this chapter is adapted from Stahler and Palla 

(2004), Chap. 6, and Appendices B and C. 

6.1 Carbon Monoxyde (CO) 
Since molecular hydrogen H2  does not possess an electric dipole moment, and is 
therefore impossible to detect in the most parts of molecular clouds where temperatures 
are too low to vibrationally excite it, it is imperative to use other molecules to probe the 
molecular content of the interstellar medium. The main species of carbon monoxide, 
12C16O , and some of its isotopologues (i.e., 13C16O , 12C18O , etc.) are most commonly 
used for this task. Carbon monoxide is a very stable molecule, with a triple-bond between 
the two nuclei, and highly abundant. It is, in fact, the second most abundant molecule in 
the interstellar medium with a relative abundance to H2  of approximately 10−4 . Figure 
6-1 shows examples of spectra from three carbon monoxide isotopologues in the 
J = 2→1  rotational transition in DR21(OH), a well-known star-forming region. These 
data were obtained at the Caltech Submillimeter Observatory, located on Mauna Kea, 
Hawaii, in October 2007. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-1 - Spectra of the  rotational transition from the 
, , and  molecular species in the DR21(OH) star-

forming region. Note that the  spectrum temperature is 
multiplied by a factor of ten (adapted from Hezareh et al. 2008, ApJ, 
684, 1221). 
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6.1.1 The Detection Equation 
We start by revisiting equation (2.25) we previously derived for the specific intensity Iν  
measured at some location away from an emitting region, of source function Sν , which is 
also located between the point of observation and some background emission Iν 0( ) . We 
have shown that  
 
 Iν = Iν 0( )e−τν + Sν 1− e−τν( ),  (6.1) 
  
where τν  is the optical depth through the emitting region. We will now somewhat refine 
the treatment we presented in Section 3.1.1 and consider the difference Iν − Iν 0( ) , which 
we will equate to the intensity of a black body of (brightness) temperature TB  in the 
Rayleigh-Jeans limit 
 

 Iν − Iν 0( ) = 2ν
2

c2
kTB.  (6.2) 

  
The reason for considering Iν − Iν 0( )  and not Iν − Iν 0( )e−τν  is that usually during an 
observation the telescope will first be pointed on the source (commonly called ON-
position or ON-source), where Iν  is measured, and then at a point away for the emitting 
region on the plane of the sky where only Iν 0( )  is present (OFF-position or OFF-
source); this method of observation is often referred to as beam switching. Combining 
equations (6.1) and (6.2) we have 
 
 Iν − Iν 0( ) = Sν − Iν 0( )⎡⎣ ⎤⎦ 1− e

−τν( ),  (6.3) 
 
or 
 

 TB =
c2

2kν 2 Sν − Iν 0( )⎡⎣ ⎤⎦ 1− e
−τν( ).  (6.4) 

 
Finally, we further assume that both the source and background intensities can be well 
approximated by Planck’s blackbody functions of temperature Tex  and Tbg , respectively 
(‘ex’ stands for ‘excitation’). We can therefore write the so-called detection equation as 
 

 TB = T0
1

eT0 Tex −1
− 1
eT0 Tbg −1

⎛
⎝⎜

⎞
⎠⎟ 1− e

−τν( ),  (6.5) 

 
where T0 ≡ hν k  is the equivalent temperature of the transition responsible for the 
detected radiation. 
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6.1.2 Temperature and Optical Depth 
Using the spectra of Figure 6-1 and the previously derived equations we determine some 
fundamental parameters characterizing the physical conditions pertaining to the 
DR21(OH) molecular cloud. These spectra for the detections of the J = 2→ 1  rotational 
transition of the 13C16O , 12C18O , and 13C18O  molecular species arise at frequencies of 
220.4 GHz, 219.6 GHz, and 209.4 GHz, respectively. The telescope efficiency is 
 η  0.65  at these frequencies, and will be used to relate the antenna and brightness 
temperatures with TA

∗ =ηTB  (see Section 3.1.1 of the Lecture Notes). 
 
We first apply the detection equation (6.5) to the line centre of the J = 2→ 1  transition 
of 13C16O . We therefore respectively denote by τ 0  and ν0  the optical depth and 
frequency at the line centre where  vlsr  −3 km s−1  (we use the same subscript for other 
quantities), and assign Tbg = 2.7 K  for the background radiation temperature (i.e., we use 
the temperature of the cosmic microwave radiation or CMB). It is probably very 
reasonable to expect that this line is optically thick, i.e., 

 
τ 0

13C16O( )1 and from 
equation (6.5) 
 

 
 
TB0  T0

1
eT0 Tex −1

− 1
eT0 Tbg −1

⎛
⎝⎜

⎞
⎠⎟  (6.6) 

 
at the line centre. we also have 
 

 T0 =
hν0

kB

= 6.63×10−27 ⋅220.4 ×109

1.38 ×10−16 = 10.6 K,  (6.7) 

 
and from Figure 6-1  
 

 
 
TB0


10 K
0.65

= 15.4 K.  (6.8) 

 
Inverting equation (6.6) for Tex

13C16O( )  we find that 
 

 

Tex
13C16O( ) = T0

ln 1+
TB0

T0

+ 1
eT0 Tbg −1

⎛
⎝⎜

⎞
⎠⎟

−1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 20.5 K.

 (6.9) 

 
Because this transition produces a line that is optically very thick, it is most likely that the 
corresponding population level is in local thermodynamic equilibrium (LTE). This is 
because radiation emanating from “far away” locations in the cloud cannot affect the gas 
locally. Furthermore, because T0  is relatively low, i.e., on the order or less than the 
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expected gas temperature in a molecular cloud, the energy levels involved in this 
transition can easily be excited through collisions within the gas, and Tex

13C16O( )  is 
therefore at a level that is perfectly suited for the kinetic temperature of the gas. We then 
write  
 
 Tex

13C16O( ) = Tkin .  (6.10) 
 
Although the corresponding 12C18O  transition is not likely to be strongly optically thick, 
it is to be expected that this molecule will be coexistent with 13C16O  and, therefore, 
subjected to similar physical conditions. Moreover, the J = 2→ 1  transitions for these 
two molecular species have very similar characteristics (i.e., T0 , ncrit , etc.). We therefore 
write that 
 
 Tex

12 C18O( ) = Tkin = 20.5 K.  (6.11) 
 
We calculate for this transition 
 

 
 
T0 =

219.6
220.4

⋅10.6 K  10.6 K,  (6.12) 

 
and from equation (6.5) we have 
 

 
τ 0

12C18O( ) = − ln 1−
TB0
T0

1
eT0 Tex −1

− 1
eT0 Tbg −1

⎛
⎝⎜

⎞
⎠⎟
−1⎡

⎣
⎢

⎤

⎦
⎥

= 1.0,

 (6.13) 

 
where TB0

= 6.5 K 0.65 = 10 K  was used. Since this transition is marginally optically 

thin or thick, we should be careful in assuming that isotopologues, such as 12C18O , are 
unequivocally optically thin, as is too often asserted (see the comment from Stahler and 
Palla at the beginning of their Section 6.3.1).  
 
On the other hand, considering the weakness of the 13C18O  line, it is likely that the 
relation  τ 0

13C18O( )1  is satisfied. We also assume that  
 
 Tex

13C18O( ) = Tkin = 20.5 K,  (6.14) 
 
for the same reasons as in the case of 12C18O  earlier and equation (6.5) then becomes 
 

 τ 0 =
TB0
T0

1
eT0 Tex −1

− 1
eT0 Tbg −1

⎛
⎝⎜

⎞
⎠⎟
−1

.  (6.15) 
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Using  
 

 

 

T0 =
209.4
220.4

⋅10.6 K  10.1 K

TB0
= 0.18 K

0.65
 0.28 K

 (6.16) 

 
we have 
 
  τ 0  0.02.  (6.17) 
 
This value is much less than unity and, therefore, consistent with our assumption. 
 
We note that the optical depth values obtained for these three transitions are qualitatively 
consistent with the appearances of their corresponding line profiles shown in Figure 6-1. 
More precisely, the 13C16O  profile is heavily saturated (i.e., flattish) even showing signs 
of self-absorption (note the ‘dip’ near the line centre), both indications that its optical 
depth is much larger than unity; the 12C18O  profile with 

 
τ 0

12C18O( )  1 only shows the 
beginnings of saturation broadening; finally, although it is admittedly more difficult to 
judge in view of its weakness, the 13C18O  line profile shows no obvious sign of 
saturation.   

6.1.3 Transitions between Two Levels and Column Density 

Let us now more generally consider a molecular species (e.g., 13C18O  or any other 
molecule) that has a density n  in a gas of total density ntot . We want to study transitions 
between two levels separated by an energy difference ΔE = E2 − E1 > 0  as a result of 
interaction due to radiation or collisions with other components of the gas; we denote by 
n1  and n2  the density of molecules in the lower and upper levels, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

794 B The Two-Level System

drift relative to the background of distant stars. This phenomenon, known as precession of the equinoxes,
continually alters the coordinate values for any object. In any particular observation, these values are re-
ferred to the appropriate epoch, the current one being the year 2000. Our maps in this book reproduce the
coordinates as published in the literature. The reader who needs a precise location for any object should
refer to the original article, as listed in the Sources section, to ascertain the epoch used. Standard programs
can, if necessary, shift the coordinate values to the current ones.

In the galactic coordinate system, one places objects with respect to the plane of the Milky Way (see
Figure A.2). This plane intersects the celestial sphere in the Galactic equator, a band that is tilted by 63◦

from the celestial one. The longitude (l) of the object is measured eastward along the Galactic equator.
Here, the zero point is the Galactic center (open circle in the figure), which is located in the constellation
Sagittarius, in the Southern hemisphere. For the latitude (b), we measure the angle north or south of the
Galactic equator. Both the longitude and latitude are given in degrees, arcminutes, and arcseconds. A
positive b-value indicates that the object is north of the equator. The origin (l = 0; b = 0) corresponds,
in equatorial coordinates, to (α = 17h45m37s; δ = −28◦56′10′′).

B The Two-Level System

We consider a species of atom or molecule of number density n dispersed throughout a gas of total den-
sity ntot and homogeneous composition. This species has only two energy levels, separated by ∆E
(Figure B.1). In any real system, there are always other levels connected by possible physical transitions.
Our two-level approximation is valid to the extent that these other transitions are slow compared to the one
of interest. We include the possibility of degeneracy, i. e., we suppose that there exist gu and gl sublevels
of identical energy in the upper and lower levels, respectively. Our problem is to find the level populations
nu and nl as a function of the ambient kinetic temperature Tkin and density ntot.

As illustrated in the figure, each atom in the lower level can be excited both collisionally and radia-
tively. The total rate of collisional excitations per unit time and per unit volume can be written γlu ntot nl,
where the coefficient γlu depends on atomic properties of the species of interest and the background gas,
as well as on their relative velocity distribution. The probability per unit time of a single atom being ex-
cited radiatively must be proportional to the ambient radiation intensity. Thus, we write this probability
as Blu J̄ nl. Here Blu is the Einstein coefficient for absorption. The quantity J̄ is related to the mean
intensity Jν by

J̄ ≡
Z ∞

0

Jν φ(ν) dν (B.1)

Figure B.1 Processes governing the populations in the
two-level system. These include: collisions with other
molecules, interaction with ambient radiation, and spon-
taneous emission.

Figure 6-2 – Possible transitions between in 
a two-level system. Transitions due to 
collisions are represented by , while 
radiative transitions are represented by  
and .  
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Transitions due to collisions are represented by γ 12  and γ 21 , i.e., the total rate of 
collisional excitation per unit volume is given by γ 12n1ntot , etc. Transitions due to 
radiative processes are characterized by the Einstein coefficients B12 , B21 , and A21 . The 
rate of radiative excitation per unit volume from absorption is B12n1J , the corresponding 
rate for the emission of photons from stimulated emission is B21n2J , while the rate of 
spontaneous emission is A21n2 . The quantity J  is related to the mean intensity (see eq. 
(2.19) in Chapter 2) through 
 
 J = Jνφ ν( )dν

0

∞

∫ ,  (6.18) 

 
with φ ν( )  the intrinsic line profile. This profile is centered at ν0 = ΔE h  and normalized 
with 
 
 φ ν( )dν

0

∞

∫ = 1.  (6.19) 

 
Under conditions of equilibrium the level populations will remain unchanged with time 
(in a statistical sense) and we have 
 
 γ 12n1ntot + B12n1J = γ 21n2ntot + B21n2J + A21n2.  (6.20) 
 
For cases where collisions dominate ( γ ntot  BJ ) we find that  
 

 γ 12
γ 21

= n2
n1
,  (6.21) 

 
for which, under local thermodynamic equilibrium (LTE) conditions, the right-hand side 
must obey the Boltzmann distribution at the kinetic temperature Tkin  that characterizes 
the collisions. That is, 
 

 γ 12
γ 21

= g2
g1
e−ΔE kTkin .  (6.22) 

 
This equation will hold for any conditions.  
 
On the other hand, when radiative processes completely dominate ( γ ntot  BJ ) the 
system will come in equilibrium at the radiation temperature Trad  and equation (6.20) 
becomes 
 

 J = A21 B21
g1B12 g2B21( )eΔE kTkin −1

.  (6.23) 
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Since under equilibrium conditions the mean intensity must equal Planck’s blackbody 
law, i.e., Jν = Bν , we have   
 

 

 

J = Bνφ ν( )dν
0

∞

∫
 Bν φ ν( )dν

0

∞

∫
 Bν

 (6.24) 

 
because Bν  is much broader than φ ν( ) . We therefore write 
 

 A21 B21
g1B12 g2B21( )eΔE kTrad −1

= 2hν0
3 c2

eΔE kTrad −1
,  (6.25) 

 
or 
 

 A21 =
2hν0

3

c2
B21

g1B12 = g2B21.
 (6.26) 

 
These relations are also valid in general.  
 
We now slightly rewrite equation (6.1) with  
 

 Iν = Iν 0( )e−τν + jν
αν

1− e−τν( ),  (6.27) 

 
where we used the ratio of the emissivity jν  and the absorption coefficient αν = ρκν   
(i.e., the inverse of the photon mean free path, with κν  is the opacity; see Sec. 2.2.2 in 
Chapter 2) in lieu of the source function Sν . We use the Einstein coefficients to express 
 

 
jν =

hν
4π

n2A21φ ν( )

αν =
hν
4π

n1B12 − n2B21( )φ ν( )
 (6.28) 

 
where it was assumed that the emission is isotropic. It is to be noted that the absorption 
coefficient contains a correction due to the presence of stimulated emission in the last of 
equations (6.28). Calculating the ratio jν αν  from equations (6.26) and (6.28) would 
lead us back to equation (6.25) (and to expressing the source function with Planck’s law), 
as would be expected. We can, however, use our equation for the absorption coefficient 



81 

to express the optical depth as a function of the total column density N ≡ nΔs , where n  
is the total volume density of the molecule under study and Δs  is the depth of the column 
of gas through the emitting region. We then find that 
 

 

τν =ανΔs

= hν
4π

n1B12 − n2B21( )φ ν( )Δs

= c
2A21
8πν 2

g2
g1
1− e−ΔE kTex( )φ ν( )n1Δs,

 (6.29) 

  
where we used equations (6.26) and the Boltzmann distribution 
 

 n2
n1

= g2
g1
e−ΔE kTkin .  (6.30) 

  
It is also customary to approximate the density profile with a width representative for the 
line profile, i.e.,  
 
 φ ν( ) ≡ Δν−1.  (6.31) 
 
Finally, we can link the density of the lower level n1  to the total density n  through the 
partition function U  with 
 

 

n = nJ
J=0

∞

∑

= n0
nJ
n0J=0

∞

∑

= n0
gJ
g0J=0

∞

∑ e−ΔEJ 0 kTex

≡ n0U.

 (6.32) 

 
where we assumed that a single excitation temperature characterizes all possible 
transitions. 
 
For the rotational levels of linear molecules like carbon monoxide and its isotopologues  
 

 

 

gJ
g0

= 2J +1

ΔEJ 0 = Be
2J J +1( )

= 1
2
kT0 1→ 0( )J J +1( ).

 (6.33) 
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Inserting these relations in equation (6.32) for the partition function we get (setting 
′J = J +1 2 ) 

 

 

UCO = 2J +1( )e−T0 1→0( )J J+1( ) 2Tex

J=0

∞

∑

≈ 2J +1( )e−T0 1→0( )J J+1( ) 2Tex dJ
0

∞

∫
≈ 2 ′J e−T0 1→0( ) ′J 2−1 4( ) 2Tex d ′J

1 2

∞

∫
≈ 2eT0 1→0( ) 8Tex ′J e−T0 1→0( ) ′J 2 2Tex d ′J

1 2

∞

∫
≈ 2Tex

T0
.

 (6.34) 

 
It follows from equations (6.29), (6.31), and (6.34) that, in general, 
 

 nJΔs =
8πν 2Δντν

c2AJ+1,J

gJ
gJ+1

⎛
⎝⎜

⎞
⎠⎟
1− e−ΔEJ+1,J kTex( )−1 .  (6.35) 

 
But since nJ = n0 nJ n0( ) = n U( ) nJ n0( ) = n U( ) gJe−ΔEJ 0 kTex g0( ) , we can write 
 

 N = 16πν
2Δντν

c2AJ+1,J

⋅ g0
gJ+1

⋅ Tex
T0 1→ 0( )

eΔEJ 0 kTex

1− e−ΔEJ+1,J kTex

⎛
⎝⎜

⎞
⎠⎟
.  (6.36) 

 
We now go back to the spectra of Figure 6-1 and seek to evaluate the column densities of 
12C18O  and 13C16O . To do so we need the following quantities for J = 1 with 12C18O  
 

 

 

ν0 = 219.6 GHz

Δν = ΔV ν0

c
⎛
⎝⎜

⎞
⎠⎟  4 km s−1 ν0

c
⎛
⎝⎜

⎞
⎠⎟  2.93 MHz

ΔE
k

= T0 2→1( ) = 10.6 K

ΔE10

k
= T0 1→ 0( )

T0 1→ 0( )  10.6 K
2

= 5.3 K.

 (6.37) 

 
Inserting equations (6.37) into equation (6.36) we get 
 
 N 12 C18O( ) = 3.26 ×1016  cm−2.  (6.38) 
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It follows that the column density for 13C16O  is 
 

 N 13C16O( ) = N tot
12 C18O( )

12 C
13C

⎡

⎣
⎢

⎤

⎦
⎥

−1 16 O
18 O

⎡

⎣
⎢

⎤

⎦
⎥

= 1.5 ×1017  cm−2.

 (6.39) 

 
Where we used the relevant isotopic ratios for the DR21(OH) molecular cloud, i.e.,   
 

 

12C
13C

⎡

⎣
⎢

⎤

⎦
⎥ = 66

16O
18O

⎡

⎣
⎢

⎤

⎦
⎥ = 312.

 (6.40) 

 
Although considering such an analysis would require going into more details than is 
possible here, the hydrogen column density can be inferred from 13C16O  measurements. 
Briefly stated, since we already derived a connection between NH  and AV  from equation 
(2.47) in Chapter 2 with 
 

 NH

AV
= 1.9 ×1021mag−1cm−2,  (6.41) 

 
the mapping of AV  for stars located behind molecular clouds that are not too opaque, 
while using corresponding measurements of the column density N 13C16O( )  for these 
same clouds (as per in equation (6.36) and (6.39), for example) allows one to establish an 
empirical connection between NH  and N 12C18O( ) . It is then found that 
 

 
N 13C16O( )

AV
= 2.5 ×1015mag−1cm−2,  (6.42) 

 
and from equation (6.41) we have 
 
 NH = 7.5 ×105N 13C16O( ).  (6.43) 
 
Applying equation (6.43) to DR21(OH), using equation (6.39), yields 
 
  NH  1.1×1023  cm−2.  (6.44) 
 
 
 


